首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   16篇
  国内免费   2篇
测绘学   2篇
大气科学   19篇
地球物理   103篇
地质学   105篇
海洋学   26篇
天文学   36篇
综合类   2篇
自然地理   17篇
  2022年   1篇
  2021年   1篇
  2020年   6篇
  2019年   5篇
  2018年   15篇
  2017年   10篇
  2016年   12篇
  2015年   18篇
  2014年   18篇
  2013年   13篇
  2012年   20篇
  2011年   17篇
  2010年   19篇
  2009年   17篇
  2008年   25篇
  2007年   7篇
  2006年   6篇
  2005年   9篇
  2004年   15篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  2000年   10篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有310条查询结果,搜索用时 31 毫秒
81.
Analysis of the historical records of Etnas eruptive activity for the past three centuries shows that, after the large 1669 eruption, a period of about 60 years of low-level activity followed. Starting from 1727, explosive activity (strombolian, lava fountaining and subplinian) at the summit crater increased exponentially to the present day. Since 1763, the frequency of flank eruptions also increased and this value remained high until 1960; afterward it further increased sharply. In fact, the number of summit and flank eruptions between 1961 and 2003 was four times greater than that of the pre-1960 period. This long-term trend of escalating activity rules out a pattern of cyclic behaviour of the volcano. We propose instead that the 1670–2003 period most likely characterises a single eruptive cycle which began after the large 1669 eruption and which is still continuing.On the basis of the eruptive style, two distinct types of flank eruptions are recognised: Class A and Class B. Class A eruptions are mostly effusive with associated weak strombolian activity; Class B eruptions are characterised by effusive activity accompanied by intense, long-lasting, strombolian and lava fountaining activity that produces copious tephra fallouts, as during the 2001 and 2002–2003 eruptions. Over the past three centuries, seven Class B eruptions have taken place with vents located mainly on the south-eastern flank, indicating that this sector of the volcano is a preferential zone for the intrusion of volatile-rich magma rising from the deeper region of the Etna plumbing system.Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: M. Carroll  相似文献   
82.
83.
We present a 2.5D magnetohydrodynamic (MHD) simulation of the acceleration of a collimated jet from a magnetized accretion disk. We employ a MHD Adaptive Mesh Refinement (AMR) code (FLASH—University of Chicago). Thanks to this tool we can follow the evolution of the system for many dynamical timescales with a high-spatial resolution. Assuming an initial condition in which a Keplerian disk, thus with no accretion motions, is threaded by a uniform poloidal magnetic field, we show how both the accretion flow and the acceleration of the outflow occur, and we present in detail which are the forces responsible for the jet launching and collimation. Our simulation also shows how the collimating forces due to the self-generated toroidal magnetic field can produce some peculiar knotty features.  相似文献   
84.
A primitive equation ocean circulation model in nonlinear terrain-following coordinates is applied to a decadal-length simulation of the circulation in the North Atlantic Ocean. In addition to the stretched sigma coordinate, novel features of the model include the utilization of a weakly dissipative, third-order scheme for tracer advection, and a conservative and constancy-preserving time-stepping algorithm. The objectives of the study are to assess the quality of the new terrain-following model in the limit of realistic basin-scale simulations, and to compare the results obtained with it against those of other North Atlantic models used in recent multi-model comparison studies.The new model is able to reproduce many features of both the wind-driven and thermohaline circulation, and to do so within error bounds comparable with prior model simulations (e.g., CME and DYNAMO). Quantitative comparison with comparable results obtained with the Miami Isopycnic Coordinate Model (MICOM) show our terrain-following solutions are of similar overall quality when viewed against known measures of merit including meridional overturning and heat flux, Florida Straits and Gulf Stream transport, seasonal cycling of temperature and salinity, and upper ocean currents and tracer fields in the eastern North Atlantic Basin. Sensitivity studies confirm that the nonlinear vertical coordinate contributes significantly to model fidelity, and that the global inventories and spatial structure of the tracer fields are affected in important ways by the choice of lateral advection scheme.  相似文献   
85.
In the internal zone of the European Alps, late Carboniferous to Permian sediments have been detached from their basement (e.g. the Zone Houillère in the Briançonnais Zone). The Pinerolo Unit (Dora‐Maira Massif) is the deepest unit exposed in the stack of the Western Alps and is considered to be Carboniferous in age based on lithological considerations. Detrital zircon grains from the Pinerolo Unit and the Zone Houillère display similar age patterns, with the youngest and largest population being Carboniferous (340–330 Ma). The distribution of Carboniferous magmatism in the Alps and surrounding areas suggests that the detritus was transported from Maures‐Corsica and possibly from the Helvetic Zone into the Zone Houillère and the Pinerolo basin. Our results highlight the potential of detrital zircon geochronology for deciphering the sources of detrital material in meta‐sediments, even if they have been affected by metamorphic overprints.  相似文献   
86.
87.
The linkage between physical and biological processes is studied by applying a one-dimensional physical-biological coupled model to the Sargasso Sea. The physical model is the Princeton Ocean Model and the biological model is a five-component system including phytoplankton, zooplankton, nitrate, ammonium, and detritus. The coupling between the physical and biological model is accomplished through vertical mixing which is parameterized by the level 2.5 Mellor and Yamada turbulence closure scheme. The coupled model investigates the annual cycle of ecosystem production and the response to external forcing, such as heat flux, wind stress, and surface salinity, and the relative importance of physical processes in affecting the ecosystem. Sensitivity experiments are also carried out, which provide information on how the model bio-chemical parameters affect the biological system. The computed seasonal cycles compare reasonably well with the observations of the Bermuda Atlantic Time-series Study (BATS). The spring bloom of phytoplankton occurs in March and April, right after the weakening of the winter mixing and before the establishment of the summer stratification. The bloom of zooplankton occurs about two weeks after the bloom of phytoplankton. The sensitivity experiments show that zooplankton is more sensitive to the variations of biochemical parameters than phytoplankton.  相似文献   
88.
Source location of long period seismicity at Volcàn de Colima,México   总被引:1,自引:0,他引:1  
This paper presents an analysis of seismicity associated with the volcanic activity of Volcàn de Colima (México) and recorded in the period November 2005–April 2006 during a field survey by the Istituto Nazionale di Geofisica e Vulcanologia (INGV)–Osservatorio Vesuviano, the Observatorio Vulcanologico de Colima of Colima University and the Instituto Andaluz de Geofisica, University of Granada. Three different types of volcanic earthquakes have been identified on the basis of their spectral properties: Type A (0.3–1 Hz), Type B (1–5 Hz) and Type C (3–4 Hz). Results of polarization analysis applied to Type A events show a predominance of radial motion, indicating that the wavefield comprises compressional waves (P) and shear waves polarized in the vertical plane (SV), while the signal always begins with a negative polarity. Type A, B and C earthquakes have been located using both a flat layered model and a 3D model including topography. Hypocentre distributions indicate that the source of Type A signals is very shallow and confined to a small volume lying about 1 km below the crater. In contrast, the source of Type B and C events is significantly deeper, with most hypocentres located in a volume of about 1 km3 centred at 2.5–3 km depth. A cluster analysis based on the cross-correlation among the waveforms of different events recorded at the same station was applied to Type A earthquakes. Only two clusters, which include only a small percentage of events were found, indicating that earthquake families were uncommon during the period of our survey.  相似文献   
89.
This paper describes a case-history of liquefaction occurred near the village of Vittorito after the April 6, 2009 L’Aquila earthquake (moment magnitude Mw = 6.3), approximately 45 km far from the epicentre. In the document, first, an estimation of the seismic motion in the area has been made. Thereafter, the performed geotechnical investigation is described, followed by the application of some fast assessment criteria for the occurrence of liquefaction, recently proposed by the new Italian Building Code. A careful assessment of all the parameters involved in conventional Seed and Idriss (1971) liquefaction analyses is considered. The cyclic resistance ratio CRR is evaluated by cone penetration tests CPT and by in situ seismic dilatometer tests SMDT; in the latter case CRR is evaluated by different empirical correlations with shear wave velocity Vs and horizontal stress index KD. Analytical data confirmed the observed occurrence of the liquefaction in Vittorito, even if the acceleration field in the area, produced by the L’Aquila earthquake, was very low.  相似文献   
90.
One of the costliest natural hazards around the globe is flash floods, resulting from localized intense convective precipitation over short periods of time. Since intense convective rainfall (especially over the continents) is well correlated with lightning activity in these storms, a European Union FP6 FLASH project was realized from 2006 to 2010, focusing on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project, 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms, lightning data were used together with rainfall estimates in order to understand the storms?? development and electrification processes. In addition, these case studies were simulated using mesoscale meteorological models to better understand the local and synoptic conditions leading to such intense and damaging storms. As part of this project, tools for short-term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long-term forecasts (a few days) of the likelihood of intense convection, were developed and employed. The project also focused on educational outreach through a special Web site http://flashproject.org supplying real-time lightning observations, real-time experimental nowcasts, medium-range weather forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented, long-range regional lightning networks can supply valuable data, in real time, for warning the public, end-users and stakeholders of imminent intense rainfall and possible flash floods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号